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"he equations of transformation which relate the space-time coordinates (x, y, 
z, t) of a stationary system to that of a moving system (x', y', z', t') whose 
speed q is constant in direction and magnitude, have obtained such importance in 
present-dv physics that it may well be worth our while to undertake an accurate 
examination of what fundamental assqtions of a physical 
necessary in order to derive the form of these equations. 
of relativity, they are given by the Lorentz transformation. 
velocity of light in a vacuum by 
stationary and the moving systems coincide at time 

weU known form: 

(or other) nature are 
According to the theory 

If we designate the 
c and choose the coordinate system such that the 

and the moving system then 0 , 
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In the limit case c = w , these equations contain the Galileo transformation: 
(2) t'= t, x' = - q t + x .  

The derivation of equations (1) in its present form is due to A. Einstein, 113 
and essentially rests on the following assumptions: 

a:& When c is the value of the velocity of light with respect to a system 
at rest, the value of the velocity of light with respect to every system moving 
uiformlyrelative tb the first in a rectilinear fashion must also equal c for all 
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directions of propagation. 
the relations 

Mathematically, this corresponds to the postulate that 

* + 212 - c2t12 = 0 2 x2 + 72 + 22 - c2t2 = 0 and XI + y' 
be derivable from one another as a consequence of the transformation equations. 

S )  The transformation equations must be linearly homogeneous with respect to 
coordinates; then their coefficients can depend only on q 

y )  When -q is substituted for q , the transformation must change to its 
inverse (i.e., solved for x, y, z, t). 

6) The contraction experienced by the lengths due to their motion must depend 
not on the sign of q but only on its magnitude. 

We should now like to demonstrate that the number of these asswtions m y  be 

greatly limited, and especially that a), 
important, namely, the postulate of the constancy of the velocity of light in 
stationary or mivng systems, may be discarded. 

the postulate which appears to be most 

Instead, our derivation is based on only the following two suppositions: 
A. When we consider q a variable parameter, the transformation equations form 

a linear homogeneous group. 
B. The contraction in the lengths is not to depend on the sign of q , but only 

on its magnitude. 
The group characteristic of the transformation equation required in A must 

necessarily be postulated if there is above all to exist a type of transfonaation 
equation valid for a l l  velocities For if the equations did not form a group, 
then the canbination of two transformations, i. e., the transition fran one system 
to one moving with the help of an intermediate system, would lead to equations of 
quite a different form than the original ones. 

We now proceed in such a manner that we first establish the most general 

q . 

transformation equations that satisfy postulate 
which also fulfill postulate B by specializing the former. As a result, only 
equations remain which either do not lead to any contraction at all or which coin- 
cide 9 t h  those of Lorentz (1). The former equations form a new type of transfor- 
mation equations 
mation (2) as a special case. 

A . We then obtain all those 

("Doppler transformation" ) which contain the Galileo transf or- 

we have already published a part of the statements and formulas used here for 
our proof in another paper [2], 
and the Mechanics Applicable Thereto" 

"On a Generalization of the Principle of Relativity 
e 



3 

Among these i s  the theorem of the addition of velocities f o r  the most general 
* transformation equation satisfying postulate A . 

Mr. V. Ignatowsky [ 3 ]  has already attempted t o  res t r ic t  Einstein's premises t o  
a smaller number. 

When one also expresses his implied suppositions, one can render the contents 

of his paper as follows: he avoids the assumption a) (constancy of the velocity 

of l ight) ,  
Furthermore, he immediately malres use of a l l  the premises and does not establish the 

most general transformation equation satisfying postulate 
position of the Lorentz transformation within all the others would become clearly 
manifest. 

but retains Einstein's postulate, 7 )  i n  addition t o  our assumptions. 

A ,  from which alone the 

This paper i s  organized, as follows: W e  make the following a pr ior i  assumption: 

y' = y, zv = z, 

since the proof of these equations, while relatively simple, would merely encumber 
our t r a i n  of thought with avoidable clumsiness, We examine, then, only the trans- 
formation of x and t . 

In Section I, we briefly restate the concepts and premises used here from the 
Theory of Transformation Groups.- 

In Sections, I1 , and I11 , we shall make use of these premises i n  t i e  con- 

text of the transformation equations determined by supposition A. In, Section IV , 
we shall  introduce a parameter * q which has the properties of a velocity. This 

leads t o  the theorem of the addition of velocities. 
going developments are given in, Section V Finally, i n  > Section V I ,  we deter- 
mine the form of the most general of the transformation equations satisfying postu- 
l a t e  A I and, especially, the contraction as a function of the velocity q intro- 
duced in, Section IV. In, Section V I I ,  we then apply our postulate B t o  these, 
and SO obtain all the equations which satisfy our system of premises. 

Ekamples relating t o  the fore- 

~~ ~ * Equation (E?) and the one following it (not numbered) i n  [21, Po 619. 
Jt)C We shall refer at  a l l  times t o  the elementary representation of the Theory 

of Groups i n  the book, 
Continuous Groups") 

"Vorlesungen %her kontinuierliche Gruppen" 
by S. Lie and Go Scheffers, Leipzig, 1893. [4] . ("Lectures 'on 

* Compare also, Ph. Frank and H. Rothe, [2], p. 618, 
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I .  

1. Let t, x, p, be three 
dinates of a point P in a t, 

variables such that t, x , are right-angle coor- 
x-plane, and p is a parameter. Further, let 

dt, x, PI, 4 0 ,  x, P) 
be two 
ments * t, x, p for which the functional determinant 

single-valued, continuous and differentiable functions of the three argu- 

(4 )  

does not vanish identically; moreover, 

may not hold simultaneously. 
When a fixed value is imparted to the parameter p , a second pair of values 

t' , x' is associated with each pair of values t, x by means of the two equations 

This association is called a "transformation" and may be designated by T . In its 
geometric interpretation, transformation T signifies a point-by-point mapping" 
of the t , x-plane onto a t', xg -plane which (as will be presupposed in the 
following) may coincide with the t, x-plane. Hence, to begin with, we relate the 
coordinates t', xq of the transformed points P' to the same coordinate system 
as the coordinates t, x of the original points P e 

or a definite interval. of it, we obtain an aggregate 6 of 0 3 ~  transformations 
each, of which, corresponds to a definite value of p ; this aggregate is also 
designated as a one-parameter (continuous) aggregate of transformations. 

parameter P' and which transforms the pair t', x1 into t", x" so that then 

P 
11 

P 

2. If the parameter p runs continuously through the entire number-sequence 

TP ' 

If T I is a second transformation of the aggregate 6 which belong to the 
P 

* If necessary, the three variables t, x, p must be confined to a definite 
to which every system of values t, x, p worthy domain of the t, x, p-manifold; 

of further consideration must belong. 
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(7 1 t" = cp(tl,x',p'), XI'= q(tl,xa,p') 

holds, by eliminating t1 , XI from (6) and (7 ) ,  we then obtain equations 

= cp ('p(t,X,P), @(t,X,P), P'), 
x" = 4f (cp(t,X,P), 9(t,X,P), P'), 

(8) P I '  

which represent a transformation T which transforms t, x directly into t", x" 
and is 

( 9 )  

called the "product" of the two transformations 

T = T T I  
P P  

T P and T '  
P 

writes 

where the sequence in which the two transformations T and T I are to be carried 
out is given by the order of the factors of the product. 

P P 
In general, 

i.e., the ccomnutative law is not valid for the ccanposition of transformations. 
3. In general, the product T of the two transformations T and. T of 
will be a transformation which does not belong to the aggregate 6 However, 

if the product of any two transformation from 6 always appears as a transformation 
from G , it is said that the transformations of the aggregate 8 possess the 
group characteristic. In that case, i.e., the associative law is valid for pro- 
ducts of three (and also for any number of) Tactors. 

equations ( 8 )  must take the form: 

P PI 

If G possesses the group characteristic, i.e., if T belongs to G , then 

(12) t" = cp(t,x,p"), x" = q(t,x,p") 

where 

(13 1 P" = dP,P') 
is a function of p and p' only . 

We can now say that the transformations of a set 6 form a group ,b when 
the following conditions are fulfilled: 

A. The transformations of possess the group characteristic. 
B. There exists a value of the parameter p = for which 

(14) dt,x,Po) = t, \Ir(t,X,P0) = x 
The transformation T 
equations 

which belongs to this parameter and is represented by the 
Po 

(15) t ' = t ,  x'=x 
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thus leaves every -pair t,x unchanged and is called the identity transformation. 
C. For each transformation T there exists a second in G whichwhen 

P 
combined with T in sane sequence yields the identity transformation T This 
second transformation is called the inverse transformation to T and is desig- 
nated by T , so that P 

P PO 
P -1 

The inverse transformation of T is found by solving equation (6) for t and x , 
which can always be done since the functional determinant (4) does not vanish iden- 
tically. As a transformation of set G , a parameter , which is solely a 
function of p , corresponds to the inverse transformation T 
value is found with the help of condition 

P 

of T This -1 
P P 

-I T = T- 
P P 

According to (l3), the two values p and 5 satisfy the equation 

The group I% is called "one-parameter" because it consists of m1 transfor- 
mations T . 

P 
4. If p is considered as a variable to be transformed in (13), and p' as a 

parameter (or vice versa) , then this equation defines a 
fomtions which also form a group 9 if p" is the transformed variable. The 
group is designated as the parameter group of & 

one-parameter set of trans- 

5. If $ is an infinitesimal quantity, then transformation which below to 
the parameter 

(19 1 P = P o + b  

differs infinitesimally from the identity transformation. 
transformation of the group, and it transforms a point 
close neighboring point P' which has the coordinates 

This is the infinitesimal 

P = (t,x) into an infinitely 

where 

when we let 
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In equations (21), which define the infinitesimal transformation, 6-p should 
be replaced by K . 6p (when K is a constant different f r m  0 ) without essen- 
tially changing any property of group . If two infinitesimal transformations 
which are mutually dependent in this ma.nner are regarded as being identical, then 
every one-parameter group contains only a single infinitesimal transformation. 
Conversely, every arbitrary infinitesimal transformation (21) generates a particular 
one-parameter group. The final equations (6) are found by integration of the simul- 
taneous system 

dt dx' 
'7(t") = = dp 

with the initial conditions: 

PO (24) t1 = t ,  x1 = x  for p =  

6. If now x is considered as a function of t : 

a curve I? in the t , x-plane 
formation ( 6 )  into another curve 

(26) 
If one sets 

then 

x = f(t) , 
is obtained; this is transformed by means of trans- 

I? with the equation 

x' = fl(t') 

dx fl(t), w9 = - dx' = fl t (t'), 
dtt 

w = - =  
dt 

for which we write briefly 

(29) w' = X(t,X,W,P) 

This is the transformation of w belonging to (6) 
according to (14), we obtain ' For p = 

L 
hence: 
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i.e., 

For p = + 6 , we have 
P 

w ' = w + 6 w  (33) 

and, we obtain for  the infinitesimal transformation of w , 
(34) 

or, more briefly: 

F-124 

( 3 5 )  6w = t)(t,x,w) . 6p 

The equations (6) and (28) together again constitute a group 
tions which transform the variables t, x, w into t l ,  X I ,  w' . This group 

i s  called the first extended group ; i t s  infinitesimal transformation i s  given by 
equations (21) and (34), and one may find from it the final. equations (6) and (28) 

d, of transforma- 

d1 

of the group by integration of the simultaneous system 
I 1 

(36)  

with the initial conditions 

(37) ts = t, xs = x, w' = w for  p = 

7. Let us now select a coordinate system S consisting of a fixed straight 
line, the x-axis, and a fixed point 0 , i t s  origin. We imagine a fixed measuring 
rod placed on the x-axis with the zero-point 0 and we imagine a clock attached 
t o  each point on the rod. 

If we then observe the motion of a material point M along the x-axis, 

namely, a there corresponds t o  each position, a definite pair of values t, x, 
definite position of the pointer 
axis with which M coincides, and a definite division of the measuring rod. 
Every definite motion i s  represented by a definite equation, (25) ,  and the 

velocity w i s  then given by the f irst  of the equations (27) .  

of that clock which belongs t o  the point on the 

If we interpret the quantities t, x as coordinates of a point P of the 
t, x-plane, then there corresponds t o  each position of M a definite point P , 
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which is called the "space-time point" of this position. We call t, x the 
space-time coordinates measured in the system S . The entire motion of M is 
represented by a continuous sequence of space-time points, i.e., by means of a 
curve I? , the equation of which is (25) and which is called the "world line of 
this motion". The velocity w at time (time-point) t is equal to the direc- 
tion coefficient of the tangent of the world line curve at the space-time point 
P. The world line curve corresponding to a uniformmotion of M is a straight 
line. 

8. Besides the system S , let us also examine, on the same straight line, 
a singly infinite set of other systems S' (i.e., of other measurements of length 
and time), each of which is associated with a certain value of a parameter p in 
such a manner that the various values of p correspond to different systems S' 

An arbitrary space-time point P which possesses the space-time coordinates 
t, x in the system S should then also possess definite space-time coordinates 
t', XI in each of the systems S' which would depend only on t, x, and p, 
that is, the space-time coordinates t, x and tl, x' of P are to be related 
by equations of the form (6) with respect to S and S'. The quantities t1 
and X I  are called the space-time coordinates of P measured in system S' Asso- 

c h t e d  %-it2 c v e q  qace-time pints there are then an infinite number of pairs 
t', x1 corresponding to the infinite number of values of p . These pairs are 
derived from t, x by means of a one-parameter set 6 of transfonaations (6).* 

from the system S to a second system SI by means of the transformation equa- 
tion (6) and then use equation (7) in order to transform to a third system SI', 
then the product of the two transformations, i. e., transformation ( 8 )  which serves 
as a direct intermediate step frcan S to S" , must also belong to the set 6 ; 
that is, the set 6 is to have the group characteristic. 

If we carry out two transformation of the set G in succession by passing 

We assume further that the original system S itself occurs among the systems 
S' 

be transformed into equation (15) for p = po; 
identity transformation. 

If then the parameter po is associated with it, then the equation (6) must 
i .e., the set B must contain the 

* 
The final portion of Section 11, beginning at this point, does not contri- 

bute to the understanding of main argument of the paper, but merely serves to 
render plausible our postulate A . 
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Finally, we suppose that there is in the set G an inverse for each trans- - formation; then, for each parameter p , there is a second, p , such that p 

and 5 satisfy equation (18) . In that case, the transformations of the set 
G form a one-parameter group 4 , and we may cmbine the above three asump- 
tions into a single one by making the following supposition: 

The transformations (6) which govern the transition of the space-time coordi- 
nates t, x measured in the original system S to the space-time coordinates, 
t', X I  measured in a system S1 , form a one-parameter group with parameter p . 

9. In order to determine the group 2 further , we now make the following 

A. Every motion of a material point M which is uniform with respect to 
further assumptions: 

the system S at rest, must also be uniform with respect to each of the moving 
systems S' . Hence, if the world line curve I? of a motion of M with respect 
to S is a straight line , then the world line curve r , of the same motion 
with respect to S' must also be a straight line; i.e., transformations of the 
group A$ must be of such a nature that they transform straight lines into straight 
lines . 

However, the only transformations of this type are projective transformations 
I41 , that is, those which have equations (6) of the following special form: 

- - +l(p)t + a22(p)x + a23(~) 

a31(~)t + a 3 2 ~  x + a33(~) 

".he group & is then designated as a 
BO Every space-time point which has finite coordinates t,x with respect to 

From this it follows [ 41 that we must have in equations (38) 

one-parameter projective group. 

a system S ought also to have finite coordinates tl, x' with respect to each 
system S' . 

If we designate 

again, by aik(p) , equation (38) 
(i = 1,2; k = l,2,3) 

takes the form 



ll 

Transformations (41) leave the infinitely distant straight line of the 

invariant, and are called affine. 

t, x-plane 

The group & is then called affine, or generally 
linear. 

C. Finally, the null-point of a space-time measurement must be the same for 

all systems, i.e., from 
t = 0 ,  x = o  

must always follow 

Then 
(43) 

t' = 0, x' = 0 

must hold, so that the equations (41) are transformed into the following: 

iUm, Yneri, t', x' =e Lizee,r hmqpneous functions of t, x with coefficients 
which are solely functions of the parameter p . The group A i s  now designated as 
a one-parameter linear homogeneous group, and its transformations leave the infini- 
tely distant straight line of the t, x-plane, and moreover, its zero-point, 
invariant [4] . 

It is hardly worth mentioning here that the coefficients aik(p) must not be 
selected arbitrarily but subject to certain conditions if the transformations are 

to form groups. 
of the form of these coefficients. 

In the following, we shall occupy ourselves with the determination 

111. 

10. We may now summarize a l l  the suppositions which we have made concerning 
transformation (6) in the following manner: 

The transformations (6) which represent the relationship between the space- 
time coordinates with respect to the original system S and the system s' con- 
stitute a one-parameter linear homogeneous group with the parameter p . 

In order for equations (43) to be transformed for the parameter value 
P = Po into equations (15 ), which represent the identity transformation, 



F-124 

12 

must hold. 
coefficients 

For the parameter value p = po + 6p , we there fore obtain the 
t 

(45) 

the equations for the infinitesimal transformation result 
tions (lg), (20), (21), (22)] in the form 

[compare No. 5 ,  equa- 

(47) st = (alp +c&x)%, 6x = (a!21 t +a22x)6p, 

?-(t,x) =,a! t + a! x, c(t,x)- a! t + a! x (4-8) 11 12 21 22 

so that for the linear homogeneous group (43) we have 

m y  be chosen arbitrarily; only their rela- ' a12.' 01'21' a!22 The coefficients an, 
tionships are essential. Hence there are m3 infinitesibl transformations (47), 
and each of them generates a definite one-parameter linear homogeneous group (43).  

by differentiating the equation (43), then 
u_. If we now examine a certain transformation of & , i.e., if we *part 

some fixed value to the parameter p , 
we obtain equations 

(49) 

from which it becomes evident that the differentials dt, dx are transformed in 
the same manner as the two finite quantities t, x ; that therefore the two 
pairs of quantities t, x and dt, dx undergo the co-gradient (kogredient) 
transformations (43) and (49). 

dt' = a,(p) . dt + a,(p) * dx, dxl  = a21(p) . dt + a2,(p) . dx , 

From equations (49) follows 



and, therefore, because of (27) : 

This equation, which gives the transformation of the velocity w into w' , 
now takes the place of equation (28) and, along with equations (43), represents 
the first extended group bl . Of special importance is the circumstance that in 
the case of the linear group, w' is only a function of w and p , but does not 
depend on t and x . 

The infinitesimal transformation of the velocity w is finally obtained by 
means of (34) and (38) in the form: 

6 w =  - [ -  a21 + (au - a22)w + auw 2 3 sp , (52) 

from which it may be concluded that the function q(t,x,w) in (35) is now free of 
the quantities t and x . By means of this infinitesimal transformation, the 
velocity w is transformed, using (33), into w'= w + 6w and thus remains 
unchanged if and only if 
I C 3  
i/J/ 

This holds true for those velocities which are roots of the quadratic equation 
6 w =  0 .  

2 (54) - a,, + (al1 - a 22 )w + 0112" = 0. 

These remain unchanged when undergoing the infinitesimal transformation, and, there- 
fore (and as we shall show at the end of No. 12) when undergoing any finite transfor- 
mation of the group . 
net) velocities, and we make this supposition: 

In the following, we shall call them preferred (ausgezeich- 

The velocity w = 0 (i.e., at rest) ought not to be a preferred velocity, 
from which it follows that we must have 

(55) a =/= 0 .  21 
Due to supposition ( 5 5 ) ,  the case 

all = a22, a,= a21 = 0 

in which equation (54) is satisfied identically and according to which each velocity 
w would be a preferred one, is excluded at this point. But in all the other cases, 
we have only two preferred velocities, which we shall designate by c1 and c2 , 
namely, 
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(56) 

where 
2 e = (al1 - + 

The symmetric fundamental functions of the roots  

, - %2 -a11 c1 + c2 - 
al2 

c and c2 are 1 

Y- 

By means of these relations, the infinitesimal transformation (52) may easily be 
put into the form : 

(59) 6w = a21 (1 - k) (1 - k )  6 p  

where the significance of c and c2 as preferred velocities i s  immediately 
apparent. 

1 
IT. 

12. Now, i n  order t o  find the f in i t e  equations (43) and (51) of the extended 

group dl , which i s  generated by i t s  infinitesimal transformation (47) and (52)) 
we would, i n  accordance with No. 6 
system 

(36) , have t o  integrate the simultaneous 

= dp - dw' -- 
2 

- dx' - dt '  

a t' + a x' a t' + a,,x' -1- azl +(al1 - a )w' + auw' 3 
(60) 

11 12 21 22 

with i n i t i a l  conditions (37). Meanwhile, we only w a n t  t o  determine equation (51) 
i n  this manner f o r  the transformation of the velocity w , 
circumstance that w' depends only cn w and p , but not on t and x , so that 

we directly integrate the equation contained i n  the system (60), 

= dp 

by making use of the 

dwq 
(61) - [ - a21 + (an - a 22 )w'+ a12w'2] 

with the init ial  condition 

(62) ws = w for  p = 

separate from it. We next obtain 

(63) sw' dwl 2 - - J ' d P ,  

22 w -[-  a*1+ (al1 - a ) w' + a=w' J 

and from this,  evaluating the integrals and noting that  the two preferred velo- 

c i t i e s  c and c2 are the two zeros of the denominator i n  the first integral of 1 
(63): 



where, by (c1,c2,w,w') is understood the cross ratio of the four values c1,c2, w, 
and w'; i.e., the expression 

(65 1 

and from this is found, by solving for w' , 
$j(P-Po)] cc[l-e P(p-pO)] - [. 

2-5 1 2  

with which the finite solution for the transformation of the velocity is found [cam- 
pare (28) and (61)] . In (67), c1 and c2 may also be replaced by their values (56)** 

Finally, it can be seen fran equation (57) that the two preferred velocities 
c and c2 indeed do remain unchanged for every finite transformation of the group; 
therefore, t-hat tney h i i e  the sme rzkes vi.t.h respect to every system 
one lets 

1 
S' , for if 

w f , 
w'=[ = w 

it follows that 

for every value of the parameter p (compare No. 11) . 
13. We now wish to consider the systems S' which were introduced in Section 11, 

NO-8, as such systems which move with different constant velocities q, with respect to 
the original system S , designated as a system at rest. Then there is associated 

* Note that equations (64), (66) and (67) are independent of the sign asso- 
ciated with the quantity fi, for if is replaced by - 0 , then, by 
(56) ,  the two preferred velocities c1 and c2 are simultaneously interchanged 
and the equations remain unchanged. 
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with each system S t  a certain parameter p , as well as a definite velocity 9 , 
fram which follows that there must exist a relation between p and q which we 
may represent i n  the form 

(68) P = F(q) 
so that  the parameter p appears as a function of the velocity 

(51) i n  place of the parameter p nothing i s  essentially changed i n  group 2 ; 

q may then be looked upon as a new parameter of the group. 

If, using equation (68) ,  we introduce the velocity q i n  equations (43) and 

In order t o  define the velocity q and hence t o  determine the form of the 
function F(q) , l e t  us establish the following postulate: 

When a material point M moves with a velocity w = q with respect t o  a Sys- 

t e m  at  res t  S , then it should have the velocity w t  = 0 with respect t o  a sys- 
tem S’ moving uniformly with a velocity q with respect t o  S 

This postulate states that  the pair  

(69 )  w = q ,  w ’ = O  

should satisfy equation (64), so that we then have 

From t h i s  we find the desired function F(q): 

and obtain, by substituting t h i s  expression i n  (67), the transformation equation for 
the velocity w , i n  the form 

I C  w’ = 
c c - (c  + c*)q + qw ’ 1 2  1 

And, finally, using (58); 

-21 + Call - a22)q + a@W 

From (71) it follows further that  the parameter po of the identity trans- 
formation, corresponds t o  the zero value of the velocity q ; that therefore the 
system at  rest S i s  t o  be regarded as that one among the Systems S’ which 
moves with velocity q = 0 . 

14. If we henceforth regard the velocity q as the parameter of our group 
and set  
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(741, a ik (F(d)=b&), (i,k = 1,2) , 
then, in lieu of (43) and (51), we obtain, the equations: 

(434 t' = bU(q) t + bE(q) X, X' = b21(q) . t + b22(q) . x 

which now define the group A1 . 
must become zero regardless of the value of 

If we set w = q in equation ('jla), then w' 
q . From this follows the identity: 

(75) 
If we now use the new equations (43a) and (5la) as the fundamental equations 

of the group 2 then the value q = 0 yields the identity, and therefore the 
value q = 6q yields its infinitesimal transformation. We may also consider it 
even now as given by equation (47); for by introducing the new parameter 
values of the coefficients CZ 

relationships - and after all, only these are essential. 

1' 

q, 
may themselves be altered, but not so their 

the 

ik 

By normalizing the parameter of the group, the coefficients are them- 
selves given definite values, whereas up to now, only their relationships had been 
fixed . 

Indeed, according to (45) and ( 4 6 ) :  

bg1(6q) = a21 b22(6q) = 1 + Qk , 
Therefore, setting q = 6q in identity (75) and omitting members of second 

order in 6q , we obtain : 
<a21 + m l  = 0 , 

0121 = - 1 , 
i. e., 

(76) 
since 6q 0 . Thus the coefficient C%21 , which had hitherto been connected 
only with the inequality (55), is now determined exactly. 

Using (44) and (U), we further obtain the following equations for the new 
coefficients bilr(q) in (43a) and (5la): 

? 

and 
L. 
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L 
If we further substitute the value (76) in the equations (47) and (52), we obtain 

for the infinitesimal transformation of group A, and 
2 (52a) 6 w =  - [1 + (al1 - a22)w + auw 1% 

for the infinitesimal transformation of the velocity w , or, from (59) , 

The finite equation (73) for the transformation of the velocity w transforms into 

and from (57) finally there results 
2 (574 e = (al1 - a22) - 4 au 

15. If we cmbine the transformation (73a), which belongs to the parameter q 
and which transforms w into w' , with a second transformation of the same kind, 
(77) 

w' - q' w" = 1 + (all - a2))q' + au q'w' ' 
which belongs to a parameter of value q* , and transforms w' into w", 
then it is a consequence of the group characteristic of our transformations that 
the resulting transformation, which transforms w directly into 
the form 

where the parameter value q" , by virtue of (13), is a function 

wl' , must be of 

of q and q' 
In order to determine this function in our case, we merely have to carry out 

the actual conbination of the two transformations (73a) and (77) . We then obtain: 
- 9' 

a! qqw - q) 
w - q  

1 + ("11 - a22)q + a= q w 
VI' E 

12 i 1 + @11+2)q* + 1 + (all-a22)q -12 q w 
(79) 
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and frm this, 

(80) 

This equation, 

there follows, by a camparison with (78), 

* 
which now determines the parameter group 33 of our group /p/ (and 4 ) 1 

expresses the addition theorem of the velocities q , where q" signifies the velo- 
c i ty  of a system S" referred t o  the system at res t  S , and where S" moves with 
a velocity q1 with respect t o  a system St which i n  turn possesses the velocity 

q with respect t o  the stationary system S . 
Finally, if equation (77) i s  t o  represent the inverse transformation of (73a), 

then, 

hence, the resulting transformation (78) must be the identity transformation, and 

therefore q" must be zero. But then, as  a consequence of ( 8 0 ) ~  when we designate 

the parameter of the inverse transformation of (73a) by 4 , 

w" = w 

we have 

and, hence, 

(82) 

If this value i s  substituted i n  p h c e  of 
inverse transformation of (73a) 

q' i n  (77), then one obtains f o r  the 

q f w' + (an - a22)q w' 
W =  9 

1 - auq w' 

which I t q y  also be obtained directly by solving (73a) for  w . 
Formula (83) demonstrates that  w i s  found from q and w' i n  exactly the 

same maaner as q" i s  found frm q and q' . This analogy i s  explained without 
diff icul ty  on the basis of the kinematic meaning of the two equations (80) and 

V. 
16. &fore we establish the f in i te  equations (43a) of group A i n  the gen- 

e r a l  case, we should l ike  t o  have a closer look, by way of example, at the two 

If the original parameter p of the group i s  retained, e. g., as occurs * 
i n  (67), then the equation (13) of the parameter group becomes p" = p + p' - po. 
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special one-parameter linear homogeneous groups (2) and (1) of the Galilean and 
brentz transformations mentioned at the beginning. 

The coefficients bik(q) of group (2) of the Galilean transformations are : - 
(84) 

fram which we obtain for q = 0 : - 

L 

in agreement with the equations (b) . It then follows from (84) that 
b U W  -= 0 , bU'(9) = 0 9 

b211(q) E- 1, b221(d -0 , c (85 1 

and, therefore, by (46a) : pu = bll* (0) = 0 , a! 12 = bZg(0) = 0 , 

so that equation (76) is satisfied. 
(52a), the result is thus: 

For the infinitesimal transformation (47a) a.nd 

( 47b ) & = O ,  6 x = -  t 6 q  

(52b) 6 w = - 6 q ;  

(573) e = o ,  

specifically 

(86) 

and 

and finally we obtain according to (57a) : 

so that the two preferred velocities cl, c2 become equal to one another; that is, 

cl= c2 = O0 ' 
while the finite equation (73a) for the transformation of the velocity is trans- 
formed into 
(73b 1 w ' = w - q  

For the group (1) of the brentz transformations, the coefficients bik(q) 
are given by : 
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- 3  

of these coefficients, we find: 

-% 
(1 9 3 ’ 2 ’  

C 

ik’ fram which, fo r  q = 0 , the equations (h) again result. For the derivatives b 

e 

and, from this results, using (46a): 
r 1 I a,, = b , , W  Ad. = 0, CX= = bUI(0 )  = - - 2 ’  

e 

[a: =: b211(0) = - 1, CX 22 = b22t(0) = 0, 
(4.m 

where equation (76) i s  again satisfied. The equations (47a) and(52a) for  the infini- 
tes-1 transformation now became 

( 47c 1 
and 

so that we obtain the following values for  the two preferred velocities cl, c2; 

(89) c1 = - c, c 2 = + c  

while, by (57a), 0 becomes 

4 0 = 2  
C 

Finally, we obtain, froan (73a) f o r  the transformation of the velocity w , 
f i n i t e  equation : 

the 
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22, 

(734  
w - q  w' . 

1 - + w  
C 

VI. 

17. We now proceed t o  establish the general equations of the one-parameter 
l inear homogeneous group h ; i . e., t o  determine the coefficients bik( q) i n  

( 4 3 4  
From a caparison of the two equations ( p a )  and (73a), which must agree with 

one another, it follows that the four  coefficients: 

c must be proportional t o  the four quantities 

1 + (au - i 
L 

where the factor of proportionality which 

a,,)% a&, 

1 - 9, 
i s  s t i l l  t o  be determined can only be a 

function of q alone, which we shal l  designate by m ( q )  , so that  then 
f- 

whereby, moreover, identity (75) i s  also satisfied. 
t i e s  (92) into the equations (43a), we obtain these i n  the form 

By substitution of the quanti- 

r 

(93 1 
t' = 4dCD + <al1 - a*,)qlt + x 1 , i x' = w(q)(  - q t + x )  , 

L 
where the function w(q) i s  not determined as yet. 

18. By means of equations (93), we can d r a w  inferences concerning the kine- 
matic significance of the factor o(q), even before we have determined i t s  form. 
Namely, if we examine a material point 
stant velocity w with respect t o  the system S and which i s  found at  the point 
x = a at the time t = 0 , then i t s  motion with respect t o  S i s  given by the 
e quat i on 

(94) x = a + w t  

M , which moves on the x-axis with a con- 
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Now, i n  order t o  find the equation of motion of M with respect t o  a system S' 

moving towards S with velocity q, we solve the equations (93) fo r  t and x , 

(95 1 

for  the inverse t r ans fomt ion  of (92),  and substitute the expressions (95) which 
have been found i n  (94). Thereby we next obtain 

¶ t' + [1 + (al1 - a2,)s1x' 

so, when we solve this equation for  x , we get 
1 + (au - a22)¶ + a124 2 

1 + (al1 - a22)9 + ay-pw 
cow 

or 

where 

(98)  

signifies the value of x' at the time t' = 0 and w1 i s  the velocity of M 
with respect t o  the system S' given by (73a). 

We now consider two material points % and I$, whose space-time coordi- 
I 

nates are t 1, x1 and t2, x2 i n  the statio- system and which move with the 
same constant velocity w . If then a t  time 

tl = t2 = 0 

the positions of 9 and &$ are given by 

x1 = al, x2 = a 2 '  
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then the equations of motion of these two points with respect t o  the system S are: 

( 9 9 )  

while the i r  equations of motion with respect t o  the system S' moving toward S 

with velocity q are : 

x1 = a1 + w tl, x2 = a2 + w t2, 

+ W' ti , x = a' + w' t' x1 = a1 2 2  2 

% * %  where tl', xlt and t2(, x2' signify the space-time coordinates of 

measured i n  system S'; further, by (98 ) :  
1 + <gl - c$2>¶ + q2q2 

4¶), 
1 + (au - a22)¶ + a u 9 w  

and the velocity w' of the point with respect t o  S' i s  again given by (73a) 
Since both points 5 and % move with the same velocity w on the x-axis, 

we may think of them as the end points of a rigid rod, the length 
measured i n  the system S, we obtain as the distance of two positions of 

%, taken simultaneously with respect t o  

2 of which, 

y and 
S , if i n  ( 9 9 )  we l e t :  

and subtract the f i r s t  equation from 

(102) 2 =  

Similarly, when we use the relation 

tl = t2 

the second: 

1' X2 - X1 = a2 - a 

tl' = t2' 

i n  equations (loo), we find the following value for  the length 
measured i n  system SI : 

2' of the rod 

2' = x21 - x 1 = a2) - a I 
1 1 '  ( 103 1 

2 So, by (101) and (102), 
1 + (al1 - a22)¶ + al.p 

1 + (au - a22)q + 
2' = . a(q)  2 . 

9 w (104) 

Finally, i f  we assume that  the rod i s  a res t  with respect t o  the system 
then, w'= 0, so it moves, by ( 6 9 ) ,  with velocity w = q with respect t o  the sys- 
tem S, Then, from (104) 

S'; that, 
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and, consequently: 

The function u(q) signifies that factor with which one must multiply the 
length 2 measured in the stationary system S of a rigid rod moving uniformly 
with velocity w = q with respect to S , in order to obtain its length 2'  in 
that system S' with respect to which it is at rest. 

The factor a(q) is designated as "contraction". 
19. Finally, to determine the form of the function a(q) we combine the 

q , which transforms the transformation ( 9 3 )  belonging to the parameter value 
pair t, x into t', xl, with a second transformation of the group A : 

r 

t" = u(q')([l + (al1 --a*2)q'lt' + a I2 q' x' 1 , 
x" = a(q')(- q' t' + x') 
L 

which belongs to the parameter value q1 and which transforms t' , X I  into t", 
X" 

the resulting transformation, which transforms t, x directly into t", x" must 
be of the form 

From the group characteristic of the transformation ( 9 3 )  then follows that 

[t" = (U(qt1)([1 + (all - a2,)q11]t + axqI1 x 1 , 

x" = a(q'()(- q" t + x) I ( 107 1 

where the parameter q" is given by equation (80) as a function of q and q' 

ried out, one obtains taking into account equation (80): 
If the combination of the two transformations ( 9 3 )  and (106) is actually car- 

= (1 - a12 qq')~(q)~(q')l:[l + (au - a2,)q1*1t + aI2qI1 X I  , 
x" = (1 - a12 qq')u(q)w(q')(- q" t + x"), 

(108) 

and from this follows, by cuurparison with (107): 

(log) u(q") = (1 - 9 s') u(q) u (q'), 

(uo) 

that is, by (80): 
9 + q' + <all - a2& 9' 

1 - a12 9 9' 
) = (1 - ax 9 s1>4q)u(q') 

u( 

This is a functional equation, with the help of which the function cu(q) 
determined. For this purpose, let us differentiate (110) with respect to q' and 

may be 
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then set  q' = 0 , whereby, we obtain: 
2 

(111) o'(q)[1 +(al1 - a22)q + az9 1 = 4 q ) [ u ' ( O )  - al240)ql 

= b22(9), 

Now, according t o  the l a s t  equation i n  (92 )  

so that, using (44a) and (46.) we obtain f o r  the contraction o(q) the conditions 

(112) 

and, 

( 113 1 

w(0) = b22(0) = 1 

~ ' ( 0 )  = b22'(0) = 0122 

by means of which the differential  equation 

results, using (111) i n i t i d  conditions(l2).  It follows from (114) that 

and, therefore 

If the integrals on both sides are evaluated and the resulting equation for O(q) 

i s  solved one finally finds the expression 
w a 2 2  

2 F  
al l  - a'22 +F 

1 2 

(117) w(q) = + + (au - a22)9 + %q* - : a l l - 2 2 - c q ]  
9 

f o r  the contraction. This indeed satisfies condition (113) also. 
With this, the f in i te  equations (93) of the general one-parameter l inear homo- 

geneous group which i s  generated by means of the infinitesimal transformation (47) 
under the supposition ( 5 5 ) ,  are ful ly  determined.* 

*Equation (117) i s  not affected by a change i n  sign of fi ei ther  (Ccanpare 
I the footnote t o  No. 12). 
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20. For the Galllean group, one finds, specifically, using (46b): 

(1174 4q )  = 1 
and for the Lorentz group, using (46~): 

This conforms with equations (2) and (1) . 
VI1 0 

21. We now proceed to utilize postulate B of our introduction and to examine 

transformation groups which are given by equations (93) and (117) which of the m3 

lead to a contraction o( q) , which is an even function of the velocity q; 
which does not favor either of the two directions of the x-axis. 

i .e., 

For this, it is certainly necessary and sufficient that the differential quo- 
tients of odd order of the function o(q) vanish at the point q = 0 . Specific- 

We thus, determine the quantities u(O), w'(O), o " ( O ) ,  ~ ' ~ ' ( 0 ) .  

3.e first tm m e  given br equations (112) and (113); we obtain the remaining 
If we ones in the simplest fashion by repeated differentiation of equation (114). 

simultaneously set q = 0, this yields 

It follows from this that 

2 - 7a,- 7a a + 6a2t) . ll 22 o " ' ( 0 )  = m a 11 I2 a22(=11 
From the first of the equations (US) it follows, in conjunction with equation 
(113), that 
(123) aZ2 = o 
and in conjunction with (122): 
(124) alpI2 = 0 . 
Hence, the equations (123) and (124) must necessarily be satisfied when the 
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transformation equations are to yield a contraction which satisfies postulate B . 
We shall soon see 
cient for this. 

22. Namely, 

that the existence of equations (123)  and (124) is also suffi- 

there are, according to equation (124), three subcases: 

1. a " 0 ,  a = = o ,  

2.  a 11 = 0, a& 0 Y 

3.l 

3. au+ 0, ax = o . 
To each of these subcases corresponds a certain type of transformation equa- 

tions which satisfy our postulates A and B . 
As may be seen from equation (93)  in conjunction with (117) and (117a), the 

first subcase yields the group of Galilean transformations; the second subcase, 
the group of Lorentz transformations, as m y  be seen from equations ( 9 3 )  in conjunc- 
tion with equation (117) and (117%). 

The third subcase however, leads to a group which has not yet been treated. 
It follows from equation (117) in conjunction with ( 1 2 3 )  and (125~): 

23. 

and from equation (93): 

(127) 
= (1 + an&, 

x'= - q t + x .  1' 
The preferred velocities have the values: 

since these are the roots of the quadratic equation (54) when its coefficients satisfy 
the conditions (76), ( 1 2 3 )  and (125~). 
be written in the form: 

The transformation equations (127) may then 

t' = (1 - 5) t, 
1 

x* = - q t + x  c (129) 

The regulation of the clock represented by this transformation may now be inter- 
preted physically in a manner similar to that which Einstein [ 5 ]  used for the 
Lorentz transformation. 
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Suppose that at time t = 0 , a ray of light emanates frm the origin in the 
Now, when a body moves with 

- q (in the time of the sys- 
1' 
c 1 

positive direction and propagates with velocity 
the velocity 
tem at rest) with respect to this body. 
light ray with respect to the moving body should still be 
by changing the rate of the clocks in the ratio c to (cl-q). But thereby we 

introduce in the moving body a time 

c 
q , then the light has the velocity 

Now, if we wish that the velocity of the 
c1 we can attain this 

1 
t' , which is given by: 

i.e., by the first of equations (129). 
Doppler principle. 
formations . 

This regulation of time corresponds to the 
We will therefore designate the equations (129) as Doppler trans- 

The Doppler transformation is essentially different from the Lorentz trans- 
q the same time prevails at all formation in that for a body moving with velocity 

positions; there exists no local time, and, what is more important: 
made provisions for the regulation for the light rays propagating in the direction 
of the positive x-axis , which therefore now possess the same velocity c1 in all 
moving bodies (here we presuppose c > 0), then the velocity of propagation of light 
L - J ~  ~?Lck: pr~p ,&e in the negative direction with the velocity 
to the system at rest, for this reason is not yet the same with respect to all 
moving bodies e 

For just because c is a preferred velocity, (-e,) is not such a velocity 
(a priori) According to equation ( 2 8 ) ,  this would only be the case for c1 = eo, 
i.e., cx = 0. But, in that case, we are dealing with a Galilean transformation. ll 

(761, ( 1 2 3 )  and (125b), we have 

when we have 

1 
-..e--" c1 with respect 

1 

On the other hand, for the Lorentz transformation, as a result of equations 

(c-. also equation (89) ) .  = -c2 = 
We may therefore summarize the result of our investigation in the following 

manner : 
Among all transformation equations which correspond to one-parameter linear 

hmogeneous groups, there exist three types for which the amount of contraction 
does not depend on the direction of motion in absolute space: Among these, only 
one type has as its consequence an actual contraction of lengths, namely, the 
Lorentz transformation [equation (l)], while the other two types, the Galilean 
and the Doppler transformations [equations (2), (129) respectively], leave their 
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lengths unchanged. 
moving systems 
value 
gation in one direction; for the Galilean transformation, onJy if the velocity of 
light were infinite. 

For the Lorentz transformation, the velocity of light in all 
has, for any arbitrary direction of propagation, the same finite 

c. For the Doppler transformation, however, this is true only for propa- 

Vienna, J~~LULI-Y 15, i g u .  
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